If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-20X-19=0
a = 1; b = -20; c = -19;
Δ = b2-4ac
Δ = -202-4·1·(-19)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{119}}{2*1}=\frac{20-2\sqrt{119}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{119}}{2*1}=\frac{20+2\sqrt{119}}{2} $
| y=25+115 | | x=-20/5 | | D^2-20d-19=0 | | H^2-4h=27 | | 11x-19=10x-17 | | s^2-14s+23=0 | | (x8)=34 | | 18=6-2x-4x | | x^2+26x=37 | | 9+2a=a+2 | | G(-1)=2x+4 | | x+12+2-29+x+5=180 | | 2(x+8)=6x- | | (8-5x)6=-162 | | (-x+6)8=104 | | p+1/40=1 | | -4x+8=11x+ | | (-4+3x)-5=110 | | -4(1+8r)-6=246 | | 7+3x=5x+ | | 10=(2y+3) | | (x+1)^2+16=0 | | 15x+5=5(x+3) | | 12x+24=A | | 6x-30=6(x-5) | | 6x-30=6(x-5 | | N+4=19+2n | | x+46+3x=90 | | 4x^2+10=-90 | | 6/y+12=11 | | 7x+84=5x+36 | | 100+x=95 |